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Abstract— Nowadays manipulators are widely used in logis-
tics systems, thus being important to improve the efficiency.
In this paper, we transform the task sequencing problem
of manipulator into a dynamic traveling salesman problem
(DTSP), and use the Monte Carlo tree search (MCTS) approach
to determine the execution order of the tasks. MCTS is an
effective self-learning algorithm, which consists of four phases,
i.e., initialization, simulation, selection and back propagation.
Furthermore, to fit the dynamic feature of real-life applications,
we introduce a dynamic mechanism using the information of
historically found solutions. Finally, we carry out experiments
based on 30 randomly generated task sets. The results show
that, compared to the most popular method which executes
all the tasks in sequence, MCTS is able to save 14.37%,
15.68%, 18.10% execution time (respectively on the small-scale,
mid-scale and large-scale task sets), indicating its ability in
improving the efficiency of manipulator.

I. INTRODUCTION

Manipulators are widely used in modern logistics systems.

For example, in an intelligent warehouse, the sorting process

is typically divided into the following steps: (1) the dispatch

center receives tasks (customer orders) and assigns tasks to

AGVs (Automated Guided Vehicle) and manipulators. (2) the

AGVs move to the destination position and the manipulators

pick products from shelves to AGVs. (3) AGVs move to

the sorting stations, to finish the sorting task. During this

process, a manipulator may continuously receive random

task requests. Assuming that the tasks can be executed in

arbitrary order, different execution order of tasks generally

corresponds to different execution time. In this case, it is

challenging to determine the execution order of tasks re-

ceived by a manipulator, so as to minimize the total execution

time.

The above problem is known as the task sequencing

problem, which could be formally defined as follows: as-

sume that a manipulator receives a series of random tasks

respectively indexed by 1,2, · · · ,k, · · · ,n (received at time

t1, t2, · · · , tk, · · · , tn respectively), where task k requires the

manipulator to move from begin position Bk to destination
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position Dk. The problem aims to determine the best exe-

cution order of all the tasks, i.e., determine a solution S =
(I1, I2, · · · , Ik, · · · , In), where Ik indicates the index of the task

executed in the kth order. Furthermore, given the execution

order, the start time TIk of each task Ik is determined as

follows:

TI1 = tI1 ,
TIk+1

= Max(TIk +CIk +CIk,Ik+1
, tIk+1

),∀ 1 ≤ k ≤ n−1
(1)

Where CIk denotes the time cost of task Ik, i.e., the time

needed by the manipulator to move from begin position BIk
to destination position DIk . CIk,Ik+1

denotes the transition time

cost between task Ik and Ik+1, i.e., the time needed by the

manipulator to move from DIk to BIk+1
. The objective is to

minimize the total time cost (the finish time of the last task

minus the receiving time of the first task), i.e.:

Minimize f (S) = TIn +CIn − t1 (2)

(a) (b)

Fig. 1. An example task sequencing problem of manipulator, where
(a): information of the three tasks (b): two different solutions and the
corresponding time cost.

In the example shown in Fig. 1, the manipulator receives

three tasks respectively indexed by 1,2,3, where S1 = (1,2,3)
and S2 = (1,3,2) are two solutions corresponding to different

execution order and different time cost ( f (S1)> f (S2)).
The task sequencing problem has many robotic-related

applications [1]. Specifically, in the field of manipulators,

the pose of a manipulator may affect its performance, thus

making the problem much more complicated. In real-life

applications, the most popular choice is to execute all tasks

in sequence, according to the receiving time of each task.

In 1989, Dubowsky and Blubaugh firstly defined the task

sequencing problem of manipulator, based on various forms

of distance matrices subject to the sequential constraints of

tasks [2]. In 2014, Pardskevilh et al. took into account the

diverse poses of manipulator [3], based on which Khelifa
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Baizid further studied the influence of a manipulator’s con-

figuration on the execution efficiency [4]. From the point

of operational research, this problem is equivalent to the

famous traveling salesman problem (TSP). The classic TSP

is described as follows: given a series of cities as well as

the distance between any two cities, then starting from a

given city, the problem aims to determine a route visiting

every city once and finally returning to the starting city,

so as to minimize the total distance. Specifically, in real-

life applications of manipulators, the tasks (equivalent to

cities) typically arrive randomly and the transition time cost

between tasks (equivalent to the distance between cities) are

generally unknown in advance, leading to a more compli-

cated problem, i.e., the dynamic TSP (DTSP) [5]. For this

problem, although numerous efforts were delivered during

the past decades [6-9], there is still no algorithm which

guarantees optimality within polynomial time. A simplified

approach is to transform the DTSP into the classic TSP at

first, and then use relevant methods (e.g., 2-Opt [10], 3-Opt

[11]) to solve it. Another idea is to iteratively utilize the

information discovered by local optimization to improve the

efficiency of global search [12-14].

In this paper, we transform the task sequencing problem

of manipulator into a DTSP problem, and originally develop

a Monte Carlo tree search (MCTS) approach to solve it.

MCTS is a meta-heuristic search algorithm based on the

idea of reinforcement learning, which attempts to find high-

quality solutions by iteratively generating solutions (simu-

lation phase), selecting most promising solution (selection

phase) and updating parameters (back propagation phase).

By learning information from the solutions obtained during

search, it is able to guide search towards promising region,

thus improving the efficiency of search. Furthermore, to

deal with the uncertainty of the DTSP, we introduce some

dynamic search mechanism which utilizes the history infor-

mation to guide the search. Finally, to verify the performance

of MCTS, we carried out a lot of experiments using a real

manipulator (UR5 brand), based on a series of randomly

generated task sets. The results show that, on the small-scale

(50 tasks), mid-scale (100 tasks) and large-scale (200 tasks)

task sets, on average MCTS respectively saves 14.37%,

15.68%, 18.10% execution time, with respect to the most

popular method which executes all the tasks in sequential

order.

II. PROPOSED METHOD

A. Algorithm framework

In this paper we transform the task sequencing problem of

manipulator into a DTSP problem, and develop a dynamic

approach which consists of iterative rounds of MCTS to solve

the problem. As shown in Fig. 2, the whole algorithm mainly

includes the following steps: (1) Initialize the configuration

of the manipulator, and perceive the surrounding environ-

ment; (2) if a new task is received, add it to the end of the

task list; (3) in case the manipulator is idle and the task list

is not empty, send the first task to the manipulator and delete

it from the task list. (4) call MCTS (detailed in Fig. 3) to

re-sort the execution order of the tasks in the task list (a

round of MCTS terminates immediately in case the task list

is changed). Repeat steps 2-4 until all the tasks are finished.

Fig. 2. The flow chart of the overall procedures

B. Estimation of CIk and CIk,Ik+1

Given the begin position BIk and destination position DIk
of task Ik, we use the following method to estimate the time

cost CIk needed to execute task Ik: (1) Firstly, we use the

Open Motion Planning Library (OMPL) to generate a path

(a series of discrete points) from BIk to DIk which satisfies

the obstacle-avoid constraints. (2) Then, we use the Time

Optimal Path Parameterization Algorithm (TOPP) [15] to

estimate the interval time cost from each discrete point to

the next one. (3) Finally, the time cost CIk is estimated by

accumulating all the interval time cost.

Similarly, given the destination position DIk of task Ik and

the begin position BIk+1
of the next task Ik+1, the transition

time CIk,Ik+1
between task Ik and task Ik+1, i.e., the time

needed by the manipulator to move from DIk to BIk+1
, can

be estimated in the same way. Given a number of tasks, all

the values of CIk and CIk,Ik+1
are estimated and saved in a

matrix C. Whenever the task list is changed (a task is added

into or removed from the task list), the matrix C is updated

dynamically, instead of re-calculating all the elements from

scratch. With these information, in case the value of CIk or
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CIk,Ik+1
is needed, we can fetch it directly from matrix C, to

improve the efficiency of the search algorithm.

C. Implementation of MCTS

Given a task list containing a number of tasks, the MCTS

method is called to schedule the execution order of the tasks,

in order to save execution time. As shown in Fig. 3, the

MCTS algorithm consists of four steps: (1) Initialization

(define and initialize parameters); (2) Simulation (probabilis-

tically generate solutions); (3) Selection (choose the best

solution); (4) Back-propagation (update the parameters).

Fig. 3. The flow chart of MCTS

1) Initialization: Let |T L| denote the length of the current

task list, we define two |T L|× |T L| matrices, i. e., a weight

matrix W whose element Wi j (all initialized to 1) is used to

control the probability of selecting task j after task i during

simulation, and an access matrix Q whose element Qi j (all

initialized to 0) is used to record the total times that task j
is ordered after task i during simulation.

2) Simulation: Given a number of tasks, the simulation

process attempts to probabilistically generate a number of

different solutions. To generate each solution, it starts from

an empty solution, and iteratively select a candidate task

(whose execution order has not been fixed) as the next task

to execute, until the execution order of every task is fixed.

More clearly, assuming the index of the last selected task is

i, the following formula is used to evaluate the potential of

each candidate task j:

E j =
Wi j
Ω +α

√
ln X

Qi j +1
(3)

Where Ω denotes the averaged Wi j value of all the can-

didate tasks, and X denotes the number of solutions already

generated by simulation. In this formula, the left part
Wi j
Ω

aims to guide the search towards high-quality solutions found

before (to enhance the intensification feature), while the right

part

√
ln X

Qi j +1
aims to guide the search towards unexplored

region (to enhance the diversification feature). The term

”+1” is used to avoid the possibility of a 0 denominator,

and parameter α is used to achieve a balance between the

intensification feature and diversification feature.

If more than one candidate tasks are available at a sim-

ulation step, we probabilistically select a candidate task as

the next task. The probability Pj for selecting each candidate

task j is determined as follows:

Pj =
E j

∑Candidate task k Ek
(4)

3) Selection: During the simulation process, we generate

a number of (controlled by a parameter Z) random solutions.

For each solution S, we estimate its objective value f (S)
based on the cost matrix C described in Section II-B. After

that, we choose the solution with the lowest objective value

as the best solution found during a round of simulation

(denoted by Sbest =(I1, I2, · · · , Ik, · · · , In)). Furthermore, based

on the information of Sbest , we call a back-propagation

procedure to update the elements of matrices W and Q as

follows.

4) Back-propagation: Corresponding to each pair of tasks

Ik and Ik+1 (1 ≤ k ≤ n− 1) belonging to Sbest found above,

we update the corresponding elements WIk,Ik+1
and QIk,Ik+1

as

follows:

WIk,Ik+1
←WIk,Ik+1

+β + γ × e

f (Sgbest)− f (Sbest)

f (Sgbest)
(5)

QIk,Ik+1
← QIk,Ik+1

+1 (6)

Where Sgbest denotes the global best solution found by

MCTS (during iterative rounds of simulation) . β and γ are

parameters used to control the increasing rate of WIk,Ik+1
,

respectively corresponding to linear part and nonlinear part.

As shown in Fig. 4, while optimizing by a round of

MCTS, the simulation, selection and back-propagation steps

are iterated, until the terminal condition (a new task is

received or the manipulator is idle) is met. After that, it

returns the best found solution, updates the task list, and

turns into the next round of MCTS, to form a dynamic MCTS

algorithm, as detailed in the following section.
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Fig. 4. The searching process of a round of MCTS.

III. DYNAMIC MONTE CARLO TREE SEARCH

The MCTS described above is suitable to tackle the

problem in case the task list is fixed. However, in many real-

life applications, new tasks are randomly (un-predictable)

assigned to the manipulator and the task list changes dy-

namically. In this case, it is necessary to develop a dynamic

variant of the MCTS. Due to this reason, whenever the task

list is changed (a task is added into or deleted from the task

list), we terminate the current round of MCTS, update the

task list and matrix C, re-initialize the parameters, and then

re-call a new round of MCTS to determine the execution

order of all the tasks. This process is repeated, until all the

tasks are finished (see Fig. 5 for an example of applying

dynamic MCTS).

Specifically, in order to utilize the historically-discovered

knowledge to improve the search efficiency, before rerunning

MCTS we initialize the elements of weight matrix W as

follows: if tasks Ik and Ik+1 are adjacent in the best solution

Sgbest found by the last round of MCTS, let WIk,Ik+1
←WInit

; otherwise, let WIk,Ik+1
← 1. Herein WInit > 1 is a parameter

used to control the influence of Sgbest to the performance

of MCTS. Besides matrix W , all the remaining search

mechanisms and parameters keep in accordance with the

ones described in above subsections.

IV. EXPERIMENTAL RESULTS

A. Experimental protocol

In order to evaluate the performance of MCTS, we carry

out experiments based on a real manipulator (the UR5

manipulator shown in Fig. 1). At first, we generate a series

of task sets, each containing a number of random tasks

(received dynamically). For each task, the start position and

destination position are randomly given within the reachable

space of the manipulator (on average about 15 seconds is

Fig. 5. An example of applying dynamic MCTS, where (a): the initial task
list; (b): send the first task (task 1) to the manipulator and delete it from
the task list; (c): re-call MCTS to re-sort the execution order of each task;
(d): receive a new task (task 6) and add it to the end of the task list; (e):
re-call MCTS to re-sort the execution order of each task.

needed by the manipulator to move from the start position

to the destination position). Different task set corresponds to

different number of tasks (classified into small-scale task set

with 50 tasks, mid-scale task set with 100 tasks, large-scale

task set with 200 tasks respectively) or different time interval

between sequential tasks. More precisely, the time interval

between any two sequential tasks is a random number which

satisfies the normal distribution N(μ,σ2), where μ denotes

the average value of time interval (respectively set to 5

seconds, 10 seconds, 15 seconds, 20 seconds, 25 seconds),

and σ2 denotes the variance (respectively set to
μ
2 and

μ
5 ),

leading to 3×5×2 = 30 task sets.
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TABLE I

PARAMETER SETTINGS

Parameter Description Value
Z The number of solutions generated during simulation 3 |T L|
α Used to guide the search direction, see Eq. (3) 2
β The coefficient of linear part in Eq. (5) 0.1|T L|
γ The coefficient of nonlinear part in Eq. (5) 1
WInit Used to control the influence of Sgbest (section III) 0.5|T L|

In industrial applications, the most popular method is to

execute all the tasks in sequence (denote this method by

SEQ), ordered by the receiving time of each task. In order

to demonstrate the superiority of MCTS with respect to SEQ,

for each task set, we execute the tasks on a UR5 manipulator

following the order respectively determined by SEQ and

MCTS. After that, we record and compare the total execution

time of SEQ and MCTS, respectively on the small-scale,

mid-scale and large-scale task sets, as detailed in Table 2

to Table 4. Note that both SEQ and MCTS algorithms are

coded in C++ language, using the Robot Operating System

(ROS), and run on a computer with an Intel Corei7-7700 3.6

GHz CPU and 15.6 GB memory.

B. Parameters setting

The proposed MCTS relies on a series of parameters,

which may affect the performance of the proposed algorithm.

After careful tuning, we choose the values listed in Table 1

as default settings of the parameters, where |T L| denotes the

length of the current task list.

C. Results and analysis

For each of the 30 task sets generated above, we respec-

tively use SEQ and MCTS to determine the execution order

of the tasks, and then execute them on a UR5 manipulator.

After that, we summarize the results in Tables 2-4, respec-

tively corresponding to small-scale, mid-scale and large-scale

task sets. In each table, the first column indicate the number

of tasks in each task set. Columns 2-3 respectively denote

the average value (in seconds) and variance of the normal

distribution (related with the time interval between tasks).

Columns 4 gives the running time (in seconds) elapsed by

SEQ to execute all the tasks of each task set, while column 5

gives the same information corresponding to MCTS. Column

6 gives the save percentage in terms of running time (MCTS

vs. SEQ). Finally, the last row gives the average results over

the task sets, while meaningless items are marked as ’-’.

From the tables, we observe that on the small-scale, mid-

scale and large-scale task sets, MCTS respectively saves

14.37%, 15.68%, 18.10% execution time compared to SEQ.

These results clearly demonstrate the ability of MCTS in

improving the efficiency of manipulator. Furthermore, we

observe from the results that on the large-scale task sets,

the improve rate is generally larger than the improve rate on

the small-scale task sets, indicating the importance of MCTS

on the large-scale instances.

TABLE II

EXPERIMENTAL RESULTS ON 10 SMALL-SCALE TASK SETS

n μ(s) σ2 TSEQ (s) TMCT S (s) Save(%)
50 5 μ/2 1617.05 1461.26 9.63
50 5 μ/5 1697.87 1392.27 17.99
50 10 μ/2 1774.25 1431.35 19.32
50 10 μ/5 1656.62 1404.83 15.19
50 15 μ/2 1635.45 1408.76 13.86
50 15 μ/5 1651.12 1446.28 12.40
50 20 μ/2 1562.48 1440.77 9.96
50 20 μ/5 1575.39 1404.57 21.57
50 25 μ/2 1691.48 1534.58 9.27
50 25 μ/5 1662.65 1420.98 14.53
Average - - 1677.78 1434.565 14.37

TABLE III

EXPERIMENTAL RESULTS ON 10 MID-SCALE TASK SETS

n μ(s) σ2 TSEQ (s) TMCT S (s) Save(%)
100 5 μ/2 3414.65 2676.76 21.60
100 5 μ/5 3354.76 2643.13 21.21
100 10 μ/2 3328.03 2744.76 17.52
100 10 μ/5 3303.8 2763.9 16.34
100 15 μ/2 3363.61 2767.96 17.70
100 15 μ/5 3365.84 2877.13 14.51
100 20 μ/2 3206.07 2781.15 13.25
100 20 μ/5 3107.58 2739.89 11.83
100 25 μ/2 3254.81 2878.79 11.55
100 25 μ/5 3315.39 2962.53 10.64
Average - - 3301.45 2783.6 15.68

TABLE IV

EXPERIMENTAL RESULTS ON 10 LARGE-SCALE TASK SETS

n μ(s) σ2 TSEQ (s) TMCT S (s) Save(%)
200 5 μ/2 6441.14 5017.15 22.10
200 5 μ/5 6118.31 4958.45 18.95
200 10 μ/2 6251.69 5024.93 19.62
200 10 μ/5 6222.13 5040.91 18.98
200 15 μ/2 6445.84 5198.89 19.34
200 15 μ/5 6239.57 4985.75 20.09
200 20 μ/2 6321.28 5345.66 15.43
200 20 μ/5 6777.77 5624.85 17.01
200 25 μ/2 6791.25 5846.8 13.90
200 25 μ/5 6552.19 5533.04 15.55
Average - - 6416.12 5257.643 18.10

V. CONCLUSION

In this paper we show that by using Monte Carlo tree

search (MCTS) approach to determine the execution order of

dynamic tasks, it is able to remarkably improve the efficiency

of manipulator, compared to the traditional method which

executes all the tasks in sequence. In the future, we will try to

extend the work to industrial applications with manipulators,

to improve the efficiency of real-life systems.
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